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Outline

s Hour 1
 Quiz discussion, review of last lecture

» Introduction to unsupervised learning:
= Principal component analysis (PCA)

= Hour 2:
- PCA continued
« K-means



“F*L Review of data statistics, ex: Quiz 1 grades
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Review last time
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Neural networks (NN)
Consider a single layer NN with 10 nodes in the first layer. How 784
many parameters need to be determined to specify this NN? £ locBer Hhie mon( X € [0, ]

?84 x5 S+ & - £330 D OV cume Jer s
(A)QWA,AT b\bl/)

Convolutional neural networks (CNN)
Consider a single layer CNN with 5 filters, each of which is 3x3.
How many parameters need to be determined to specify this CNN?
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Example applications of NN in IGM

Prof. Colin Jones: Predictive Control Lab

Goal: develop a dynamical model of the temperature evolution in a building for control
(Control objective: minimize energy consumption while ensuring comfort of occupants)

' Introduction
Issues of classical models 3.5
— —— RC model
* Classically, people use physic.s-based models, built from first principles 3 O PCN N
* Follow the laws of physics .

* Large engineering overhead

... can we leverage data in
black-box methods?

... but each building is different!
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=Pl Introduction

Unsupervised learning

Unsupervised learning is a type of machine learning that looks for previously
undetected patterns in a data set with no pre-existing labels and with a minimum of
human supervision.

In the next techniques, we don’t use labels anymore
Note: the objective is vague but we will consider 2 concrete instances
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Dimensionality reduction

Through

principal component analysis
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Motivation
INntuition

We have samples described by a series of features

We want to find a smaller set of new
features that explain our sample because:

| ess features Is easier to visualize

Some of the current feature can be
redundant

Some of the current features are not very
useful to describe our samples

Feature 1 X1



=" Principal component analysis (PCA)

Approach to dimensionality reduction

How to find this smaller set of new features ?

PCA : Find the best linear combination of
features to create new features that explain our
samples better

Feature 1 X
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PCA

Projection of points onto a lower dimensional subspace

How to find this smaller set of new features ?

WX T WhXy

The new feature

|

A mix of length and weight that describe
our samples better
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PCA - example application in python

JNw
= Dataset: Leaves’ optical reflectance measured at each nm in the range of 450-2800 nm Wavelength, see more

detalls about the experiment here
= Question: what is the size of feature vector foreach leaf? r» & 1K ( 240 -ACC = 2cco>
= Goal: can we reduce the dimensionality of feature vector and still capture the distinguishing features of each leaf

— Black locust
—— Wintercreeper
—— Dwarf schefflera

Reflectance

500 1000 1500 2000 2500
Wavelength (nn_m)

= Other applications: dynamical system model order reduction, audio compression for
recommendation algorithms, text processing for news recommendation



“*"L Finding distance of a point to a subspace
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Projection of a point onto a subspace
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=PrL Find a subspace to minimize average distance of data to it

. N ‘ Q\
Dql/&f gg"}‘ < X\%. * C—lR
- o x v
Sum of distances of all data points to a subspace & - { O a | o e—er , BEpR
bie ch \iur\c\nu\ ~ PC xS ~ oanof\o/mQD
QJ \/‘@N ( IA\ \‘B (27 c\ g SUC)’\ —-H/\C,A\
J(%\ ) \(\_Q— ?, c\\gj‘_ (X\/ SB (S Y\/\ln:rv\l’z,qc‘
PCA chooses a subspace to minimize
N
N
~ |
J sy - L = | < ox |\ = oz | x' - I
N (= N 1 2
v
Forarg sen & spammed by 1801 B =[e(0] ],

4



=F7L " Formulation of PCA objective using the data matrix
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=L Eigenvalue decomposition of a symmetric matrix
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=P7L Solution to PCA using eigenvalue decomposition
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Principal components

Example: projection of data onto 2 principal components
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PCA

Pseudo-code

NP
1. Standardize data ( sbhecdr meen, divicle \°j A ) Y. € IR
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3. To reduce the dimension to
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=L PCA example - distinguishing texts

Defining features
Each data sample is adocument  «' @ =1, , N

There are d unique words In all the documents  x ¢ IRC\

Featurej is positive for document « if word | is in document

(
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=L TFIDF feature definition for documents
teem 7
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=F*L PCA example

Based on “Principal Component Analysis” lecture of Stanford EE104:
https://ee104.stanford.edu/lectures/pca.pdf

Distinguishing text: The Critique of Pure Reason by Immanuel Kant and
The Problems of Philosophy by Bertrand Russell
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=Pl Dimensionality reduction

Other techniques

There are several other techniques for dimensionality reduction :

Linear discriminant analysis (LDA)

Generalized discriminant analysis (GDA)
T-distributed Stochastic Neighbor Embedding (t-SNE)

Autoencoders ( ne qu Y\e)wovlc g)



=Pl Autoencoder

Introduction

= An autoencoder is a type of neural network often used for dimensionality
reduction.

= Autoencoders are trained in an unsupervised manner, by minimizing the

N
reconstruction error / loss LY L (x*, &' - i
Ni=21 ( ) [ B = ’2 (x ) —>
. N
« Example: Squared error ﬁo 'Z] <) = X
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=Pl Autoencoder

Autoencoder vs. PCA

394
X (original samples) % & IR

Top: Some examples of the original MNIST
test samples

Middle: Reconstructed output from an auto-
encoder with a latent space of 8 dimensions

This auto-encoder uses convolutional layers, and
was trained on the MNIST training set

Bottom: Reconstructed output from PCA with
3 reduced dimensions

Image credit: F. Fleuret, Deep Learning (EPFL)



=PFL
Summary - dimensionality reduction

Used for
 Exploratory data analysis
» Visualizing data
» Help reduce overfitting by reducing feature dimension

PCA: an approach to dimensionality reduction
= Projects data onto a linear subspace
= Useful in case there is approximately linear dependence
between different features

= Easy to compute 3
= Connection to singular value decomposition (see Problem set 2)



